Part 3: Concurrency Control

e motivation

— hardware-software synchronisation in the OS
— process-process synchronisation and mutual
exclusion in the OS

e multi-threaded OS and processes
e shared-memory (within address-space) IPC
e |IPC and system structure

e no-shared-memory (cross-address-space) IPC

¥ OSF Part 3 Concurrency Control: —

114

Concurrent device handlers 1

'starts
A’s ISR __ _.device _ _ _ _ _ __ _ ___
'
'
Process A ' WAIT/block
Process B o WAIT/block
[
'
' starts
B’s ISR ____ _l‘device_ _ _ _ _ _

B’s device

A’s device signals
n interrupt

-—:—-—-L
A’s device] — — — — T

mmmm device busy

mmmmmm code executing on

¥ OSF Part 3 Concurrency Control: — Synchronisation

a processor

B’s device signals
an interrupt

115

¥ OSF Part 3 Concurrency Control: — Synchronisation

Concurrent device handlers 2

at time T both process A and process B are ready
(runnable)

— process A was interrupted after starting its
device but before WAITing
— process B was made ready by its ISR

non-preemptive scheduling - A MUST run again
preemptive scheduling - OS can choose

preemptive scheduling - A's device might interrupt
while A is still ready but not yet scheduled. The
system should store a “wake-up waiting” (device
event) for A to find when it blocks waiting for its
device's event.

116

Hardware-software synchronisation 1

Process A

anEvent .WAIT

OS process
level

r WAIT (anEvent) (however programmed)

continues running

after possible delay
A 4

Process A’s descriptor

OS implementation-
of-processes level
<

routine/method
to implement W
WAIT (anEvent)

| ready or blocked

routine/method

to implement x////,/

SIGNAL (anEvent) <«
A

4
N
v event (s) awaited
A ey s
, events waiting

from interrupt service
NOTE: asynchronous/interrupt-driven

¥ OSF Part 3 Concurrency Control: — Synchronisation 117

¥ OSF Part 3 Concurrency Control: — Synchronisation

Hardware-software synchronisation 2

suppose process A’s call:

— enters the WAIT routine
— reads “events waiting” and finds none
— ...then is interrupted by a call to SIGNAL

the SIGNAL routine finds process A ready

and its event not in “events awaited” and therefore:

— sets the event in “events waiting”
— exits

the WAIT routine resumes after the interrupt

— process A sets the event of interest in “events
awaited”

— and its status to blocked (awaiting event)

— and exits

we have DEADLOCK

(see book Concurrent Systems for more O-O view
of event management and process/thread
management)

118

Hardware-software synchronisation 3
this is an example of a RACE CONDITION

the data is shared - read and written by
processes/threads executing the WAIT and
SIGNAL routines

we are seeing one possible result of the arbitrary
interleaving of the instructions of WAIT and
SIGNAL because of interrupt-driven transfer of
control

WAIT and SIGNAL must be made ATOMIC
(not-interruptable). It is ESSENTIAL for system
correctness that we can do this. - HOW?

— forbid interrupts? - only works on a uniprocessor
— composite instructions, semaphores ... see later

how to achieve correct access to SHARED DATA
by CONCURRENT PROCESSES is a general
problem:

— in operating systems - because they are
multi-threaded
— in concurrent applications running at user level

¥ OSF Part 3 Concurrency Control: — Synchronisation 119

1/0 interfaces 1/0 Concurrent OS Execution

I/0 request application application process application
program request runtime/
language’s I/O interface library
language runtime this level must be prevented from
A system and programming devices directly.
library routines I/0 is done by requesting A
OS service via system calls system
call user level
operating system
user .
level system system | 1anguage—%ndependent
call |® ° °]| ca11l 0S8 I/0 interface I/0 control
operating
system
i device-independent:
\ I/0 control selects specific buffer area for a device type
I/0 service required

' I:] data buffers
reeeh L] .. L [
RN

e privileged OS programs devices data buffers
0[] [

0 . 0 . :
e unprivileged application makes requests to OS for _l
1/O via system calls

device handler process

buffer access | device handler |

A

interrupt
service operating system
routine hardware
device
event
120 OSF Part 3 Concurrency Control: — Synchronisation 121

¥ OSF Part 3 Concurrency Control: — Synchronisation

Concurrent OS Execution

e top down, application-driven, OS invocation
accesses data buffers

e bottom-up, device-driven, OS execution
also accesses data buffers

e need concurrency control, support for:

— mutual exclusion from shared data.
Only one process/thread at once may access
writeable data.
Must be able to wait while another finishes (and
signals).

— condition synchronisation over state (e.g.
presence/absence) of data.
Must be able to wait until data is signalled as
useable - BUT - must not stop others from
accessing it while waiting (or it may never be
able to reach the awaited state).

¥ OSF Part 3 Concurrency Control: — Multi-threaded processes 122

a) sequential

programming language

Processes and Threads

b) concurrent programming language
no OS support (user threads only)

address space

address space

one program
one process

one program
one process

runtime
system

runtime
system

1 kernel threads 1

address space

address space

one program
many processes
? user threads I ?

one program
many processes
? user threads I ?

runtime
system

runtime
system

1 kernel threads 1

0S/kernel

0S/kernel

c) concurrent programming language

OS kernel threads for user threads

address space

address space

one program
many processes

I user threadsl ?

one program
many processes

I user threadsl ?

runtime
system

runtime
system

kernel
MR threads ¢

0S/kernel

¥ OSF Part 3 Concurrency Control: — Multi-threaded processes

123

address space

s
one program -
many processes

?user threads? |

runtime
system

Runtime system - user threads

b) concurrent programming language

no OS support (user threads only)

address space of process

[y
[y
[y
[y
)

[y
[y
[y
[y

runtime system

B

C

T user threadsT

user-thread implementation
utid = create ()
H H H kill
v
v
‘\
A}

(utid)
wait (utid)
signal (utid)
. OO g schedule ()
\ user thread user thread
Y\ data operations
‘\
)
‘l
‘\
)

1 one kernel-thread or process

0S/kernel

¥ OSF Part 3 Concurrency Control: — Multi-threaded processes

124

Runtime system - user and kernel threads

address space

one program
many processes

1 user threadsTT

runtime
system

\ kernel
' threads

c) concurrent programming language
"~~Q§ kernel threads for user threads

~
~.
~
~~

~a.
~a
~a
~
~
~

A

address space of process

B

f

runtime system
A
A

1 user threadsT

ktid = create ()
kill
‘\
A
A)
A

user—-thread implementation

(ktid)
wait (ktid)
signal (ktid)
. I I o R
5 user thread user thread
\ data operations
‘l
'
Y\ 1one kernel-thread per use:—threadf 1
‘l
'
)

ktid = create () calls OS
kill (ktid) calls OS:
wait (ktid)

create-thread
kill-

O0S/kernel

signal (ktid)

may call OS:
the OS

carries out thread scheduling

may call OS:

()
thread

(ktid)
block-thread

(ktid)

unblock-thread (ktid)

OSF Part 3 Concurrency Control: — Multi-threaded processes

125

User threads only

can't respond to OS events by switching
user-threads

can't use for real-time applications - delay is
unbounded

the whole process is blocked if any thread makes a
blocking system call

application can't exploit a multiprocessor
OS knows only one process/kernel-thread

BUT handling shared data is simple
- no user-thread preemption i.e. threads are
switched ONLY on calls to the runtime system

¥ OSF Part 3 Concurrency Control: — Multi-threaded processes 126

Kernel threads and user threads

kernel threads (therefore user threads) are
scheduled using the OS’s scheduling algorithm

the application can respond to OS events by
switching user-threads - but only if OS scheduling
is preemptive and priority-based

real-time response is therefore OS-dependent.

user-threads can make blocking OS calls without
affecting other user threads which can continue to
run

can exploit a multiprocessor

there are different thread packages

needn’'t have one kernel-thread per user-thread
- see books Concurrent Systems/Operating
Systems

¥ OSF Part 3 Concurrency Control: — Shared-memory Inter-Process Communication 127

Critical regions

A B
CR shared CR
data
\ \/
A

entry protocol

test flag
if shared data is busy,
test again (busy-wait)
if free set to busy
and enter

CR

exit protocol

set flag to free

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC

processes A and B contain
critical regions (CRs)

— code which reads or writes
this shared data

note:

1. CRs needed only
if some process writes

2. every CR is associated with
some specific shared data

flag: free/busy

shared
data

B

entry protocol

test flag
if shared data is busy,
test again (busy-wait)
if free set to busy
and enter

CR

exit protocol

set flag to free

128

Indivisible test-and-set

e in the entry protocol test and set must be
atomic/indivisible - HOW?

— forbid interrupts? - NO - uniprocessor only and
inappropriate for general use.

— machine instruction - YES
read-modify-write (test-and-set) (CISC)
read-and-clear (RISC)

e.g. read-and-clear
flag =0 // shared data is busy
flag =1 // shared data is free - initial value

entry protocol:

read-and-clear, register flag
if value in register is O shared data was busy so retry
if value in register is not zero shared data was free
and you claimed it.

e can also be used for condition synchronisation

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 129

Semaphores: Dijkstra THE 1968

e entry protocols above involve busy-waiting
e better to block waiting processes

Define a new type of variable - semaphore
Operations for the type are:

wait(aSem) or aSem.semWait (Dijkstra’s P(aSem)):

if aSem>0 then aSem = aSem-1
else suspend the process waiting on aSem

signal(aSem) or aSem.semSignal (V(aSem))
if there are no processes waiting on aSem
then aSem = aSem+-1
else free one process
which continues after its wait instruction

Implementation: an integer and a queue

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC

Uses of semaphores

mutual exclusion - guard a data structure
values 1 (free) and 0 (busy)

condition synchronisation
values 0 (must wait) 1,2,3...N (can proceed)

e.g. semaphore resource3 is initialised to 3
process A: resource3.semWait() value = 2
process B: resource3.semWait() value = 1
process C: resource3.semWait() value = 0
process D: resource3.semWait() value = 0
and process D is blocked on resource3

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC

131

Mutual exclusion Two-process synchronisation

concurrent processes: wait before signal
serialisation of critical regions o Sem A B
aSem A B C 5
1 —>
1, ! aSem. semWait
aSem.semWait 0 :
0] A 1 v
=B asem. semWait ! aSem.semSignal
CR 1 0 |
0 1 i —1> il
—+ B, C 1 aSem.semWait 4
1 1
1 1
aSem. semSignal 1
0 CR 1
_.>c 1 . -
aSem. semSignal signal before wait
- > CR aSem A B
aSem.semSignal 0 =
1 \ 4
—1» l aSem.semSignal
1
= v
aSem.semWait
0
—1>
v \ 4

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 132 OSF Part 3 Concurrency Control: — Shared-memory |IPC 133

Implementation of semaphores 1

address space of process

A user threads B c
xsem.semWait xsem.semWait
xsem.semSignal
application

runtime system
user-thread implementation

| xsem
|xsem.semWait | 0
| A,C

[xsem.sFmSignall
Oo0Oo ,

user thread

data implementation of wait and signal
on semaphore objects

user space Atid 1 one kernel-thread per user-thread 1Btid 1Ctid

0OS/kernel
ktid = create () calls 0OS: create-thread ()
kill (ktid) calls OS: kill-thread (ktid)

xSem. semWait by Atid may call O0S: block-thread (Atid)
xSem.semSignal by Btid may call OS: unblock-thread (Atid)

the OS carries out thread scheduling

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 134

Implementation of semaphores 2

o for user threads only (OS sees only one process)
the runtime system does all semaphore and user
thread management

e when user threads are mapped to kernel threads
semWait and semSignal must themselves be
atomic operations
(multiprocessor or preemptive scheduling)
associate a flag with each semaphore object
and use a composite instruction such as
read-and-clear

e crucial and difficult area of system design

e this also applies to kernel threads executing the OS
and using OS semaphores for mutual exclusion and
condition synchronisation

e the need for concurrency control first arose within
OS - now we have concurrent programming
languages and OSs support multi-threaded
application processes

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 135

shared N-slot buffer 1 shared N-slot buffer 2

producer consumer
g * now assume many producers and many consumers
. outptr - :
produce an item is there an item for simplicity, use one semaphore to ensure
®*is there space in the buffer? mutually exclusive access to the buffer by all processes
in the buffer? remove item (one of the producers and one of the consumers
insert item consume item could access together - we do not show this)
I —
inptr
P use another semaphore:

. guard, initially 1 (buffer free)
« = potential delay

first assume one producer and one consumer producer consumer

semaphores:items, initially 0 (items in buffer) l | |outptr
—>

. s . produce an item
spaces initially N (spaces in buffer) « spaces. semWait ()

e guard. semWait ()

insert iten.l guard.semSignal ()
guard.semSignal () ~ spaces.semSignal ()
producer consumer items.semSignal() inptr consume item

| |outptr « = potential delay
—_

® items.semWait ()

® items.semWait ()
* guard. semWait ()
remove item

produce an item

® spaces.semWait () remove item
insert item spaces.semSignal ()
items.semSignal () consume item

| —b S N .
inptr | this is programming: mutu?,l_exclusz.on . _
condition synchronisation

e = potential delay

this is programming condition synchronisation

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 136 OSF Part 3 Concurrency Control: — Shared-memory |IPC 137

Multiple readers, single writer concurrency control

Many readers may read simultaneously,
a writer must have exclusive access
Assume writers have priority

ar is the count of active readers
rr is the count of reading readers
aw is the count of active writers
ww is the count of writing writers
(but they must take turns to write one-at-a-time

readers’ code writers’ code
® become active reader @ become active writer
(ar = ar+1) (aw = aw+1)
if no active writers if no reading readers
then proceed to read then proceed to write
(rr =r1r+1) (ww ;ww+1)
Oclse defer to writers Oeclse await no readers
(await aw = O)%, LY (r=0)
\ 7
p /// . .
AN s claim turn to write
N\ s,
\ s WRITE
READ N .
AR release claim
Va AN
7 N
z \
ar = ar-1 //’ N ®aw=aw-1
rr=rr-1 e N | ww=ww-1
ifrr=0 s Nifaw =0
%
then wake up waiting writers Mthen wake up waiting readers
exit exit
¥ OSF Part 3 Concurrency Control: — Shared-memory IPC 138

@® mutual exclusion (to access shared counts)

———» O condition synchronisation

Semaphores - discussion

the mechanism underlying concurrency control in
operating systems and concurrent programs

difficult for programmers to use correctly

— can forget to wait (corrupt data)
— can forget to signal (deadlock system)

— programs are complex - e.g. readers and writers

unconditional commitment to block
(but can fork new threads for concurrent activity)

unbounded delay

concurrent programming languages provide
higher-level constructs but implement them using
semaphores:

conditional critical regions, monitors,
synchronised methods and condition variables,
active objects, Ada rendezvous and guarded
commands

OSF Part 3 Concurrency Control: — Shared-memory |IPC 139

Java concurrency control constructs

SYNCHRONISED methods of an object execute
under MUTUAL EXCLUSION with respect to
all synchronised methods of the object

| WAITp
|
!

NOTIFY (ALL)

{_

@® mutual exclusion (to access shared counts)
———0 condition synchronisation

implementation: a semaphore per object

CONDITION SYNCHRONISATION

(not very good)

WAIT (block, release exclusion on object)
NOTIFY (implementation frees an arbitrary thread)

NOTIFY ALL (implementation frees all threads
first to be scheduled gets in

they MUST retest the WAIT condition)

¥ OSF Part 3 Concurrency Control: — Shared-memory IPC

140

IPC and system structure 1

cross address—-space IPC
e.g. pipes
message—-passing
~ process’s
address space

process’s
address space

———

userl
threadv

shared
data

kernel threads

0S: in every
process

address space

(shared-memory

¥ OSF Part 3 Concurrency Control: — IPC and system structure 141

IPC and system structure 2

e user-space processes need to interact
e.g. clients and servers

e OS must support cross-address space IPC
e shared memory IPC is used:

— at user level within a multi-threaded program
(server or application)

— within the OS which is inherently
multi-threaded:
user threads call for service and execute the OS
as kernel threads

¥ OSF Part 3 Concurrency Control: — IPC without shared memory 142

asynchronous message-passing 1

A message has a system-specified header containing
the sender and receiver IDs.
The message body is most often unstructured bytes
(to the IPC service). The application must interpret.
But typed messages (cf. arguments to procedure
calls) are becoming more common in distributed

systems.

address space

A

}

messSend (B,)
| ™=

user space

address space

0S/kernel

process A’s
message queue

—~—

routine
to implement
messSend

routine
to implement
messWait

process B’s
message queue

e = potential delay

¥ OSF Part 3 Concurrency Control: — IPC without shared memory

143

asynchronous message passing 2

delay on messWait if no matching messages in

queue

no delay on messSend: message is buffered by

system if receive

need to be able to wait for message from “anyone”

r not waiting

note that message passing implementation needs
shared memory concurrency control

client-server interaction: example as below

address space

client process C

}

messSend (S, %)

messWait (S, \)
\....

address space

cross—addess—-space
message-passing
with buffering
as required

e = potential delay

server process S

{

messWait (?, \)
e |

messSend(C,§)

¥ OSF Part 3 Concurrency Control: — IPC without shared memory

144

Crashes and composite operations

e For many system failures main memory is lost and

persistent store is not.

Some operations are multi-stage and require
changes to data structures in both main memory
and persistent memory

e.g. delete file = transfer file's disk blocks to
free-block list and remove file's entry in superior
directory.

e.g. most database operations.

if a crash occurs in the middle of a composite
operation the persistent store is left in an
inconsistent state.

The concept of atomic operation or transaction is
defined: if a transaction completes successfully its
results persist; if it does not then the system state
must be restored as though it had never started.

¥ OSF Part 3 Concurrency Control: — Transactions 145

Concurrency and composite operations The ACID properties of transactions

e We have seen how concurrency control can be
implemented for a single operation in main
memory (e.g. using a semaphore).

e Atomicity: the “all or nothing” property defined
above.

e Now consider composite operations: e Consistency: if the system is in a consistent state a

_ in main memory transaction moves it to another consistent state.
- involving both main memory and persistent e Isolation: The effects of an incomplete transaction
memory are not visible to other (concurrent) transaction.

e Composite operations are subject to deadlock e Durability: Once a transaction completes
e.g. In main memory: (commits) its effects will persist, even if there are

subsequent system failures.

A B If a system supports transactions it must ensure the
ACID properties hold under concurrency and crashes.

aSem. semWait

CR (for aSem) bSem. semWait

CR (for bSem)
bSem. semWait

aSem. semWait

e Any systems that allocate resources dynamically
are subject to deadlock.

¥ OSF Part 3 Concurrency Control: — Transactions 146 ¥ OSF Part 3 Concurrency Control: — Transactions 147

Summary of Part 3
You should now understand:

e why OSs must support concurrency control
- for internal OS execution
- to support multi-threaded processes

e mutual exclusion and condition synchronisation
e semaphores: uses and implementation

e at least one concurrent program involving several
semaphores (if producers and consumers is easy,
try readers and writers)

e interprocess communication (IPC) within and
across address spaces

and at least have heard about:

e transactions

e deadlocks

¥ OSF Part 3 Concurrency Control: — Summary of Part 3 148

